

Web Auth

Abram Hindle
abram.hindle@ualberta.ca

Department of Computing Science
University of Alberta

http://softwareprocess.es/
CC-BY-SA 4.0

mailto:abram.hindle@ualberta.ca
http://softwareprocess.es/

Web Authentication

● The methods of authenticating users
according to the HTTP spec.

● Somewhat different from alternative auth
means such as secure tokens, cookies, and
sessions, but often used together.

● Since software is on the web, we need to
apply the same protections we apply to
software.

 HTTP Authentication: Basic and
Digest Access Authentication

● Defined in http://www.ietf.org/rfc/rfc2617.txt by
Franks et al. 1999

● 2 forms of auth
– Basic

● User name and password sent as “clear text”
● Unsafe unless you use SSL/TLS (HTTPS)

– Digest
● Using cryptographic hashes and shared secrets to authenticate.

Slightly safer, can still get hijacked.

● Hint: Use HTTPS all of the time ;-)

http://www.ietf.org/rfc/rfc2617.txt

HTTP Basic

HTTP Basic

● Easiest and “stateless”
● User accesses a resource and a 401 unauthorized is

returned but a WWW-Authenticate header is sent.
– WWW-Authenticate: Basic realm="Name of your realm"

● Realm is what you are authenticating for

– User-agent responds with:
● Authorization: Basic aGluZGxlMTpwYXNzd29yZDE=

– Base64(userid + “:” + password)
– Base64(“hindle1:password1”) === “aGluZGxlMTpwYXNzd29yZDE=”

HTTP Basic Assumptions

● Client should be access all paths “at or deeper
than the depth of the last symbolic element in
the parth field”
– So all files and subdirs within whatever you

authenticated with.
● You can send authorization as much as you like.

HTTP Basic

● HTTP Basic over HTTP
– Unencrypted
– Insecure
– Stealable
– Unsafe
– Proxyable
– Stateless

hindle1@piggy:~$ curl -v http://softwareprocess.es/b/basic-auth/index.html
* Adding handle: conn: 0x2249b70
* Adding handle: send: 0
* Adding handle: recv: 0
* Curl_addHandleToPipeline: length: 1
* - Conn 0 (0x2249b70) send_pipe: 1, recv_pipe: 0
* About to connect() to softwareprocess.es port 80 (#0)
* Trying 75.119.223.206...
* Connected to softwareprocess.es (75.119.223.206) port 80 (#0)
> GET /b/basic-auth/index.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
>
< HTTP/1.1 401 Authorization Required
< Date: Mon, 24 Mar 2014 04:35:20 GMT
* Server Apache is not blacklisted
< Server: Apache
< WWW-Authenticate: Basic realm="HTTP Basic Example"
< Last-Modified: Tue, 26 Jun 2012 16:34:47 GMT
< ETag: "0-4c362ad3537c0"
< Accept-Ranges: bytes
< Content-Length: 0
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
<

hindle1@piggy:~$ curl -v -u username:password1 http://softwareprocess.es/b/basic-auth/index.html
* Adding handle: conn: 0x12c1bd0
* Adding handle: send: 0
* Adding handle: recv: 0
* Curl_addHandleToPipeline: length: 1
* - Conn 0 (0x12c1bd0) send_pipe: 1, recv_pipe: 0
* About to connect() to softwareprocess.es port 80 (#0)
* Trying 75.119.223.206...
* Connected to softwareprocess.es (75.119.223.206) port 80 (#0)
* Server auth using Basic with user 'username'
> GET /b/basic-auth/index.html HTTP/1.1
> Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQx
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Mon, 24 Mar 2014 04:36:52 GMT
* Server Apache is not blacklisted
< Server: Apache
< Last-Modified: Mon, 24 Mar 2014 04:31:15 GMT
< ETag: "a-4f552b4c850af"
< Accept-Ranges: bytes
< Content-Length: 10
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
<
it worked

HTTP Basic

hindle1@piggy:~$ base64 -d
dXNlcm5hbWU6cGFzc3dvcmQx
username:password1

> Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQx

So no encryption there!

HTTP Basic

HTTP Digest Authentication

● “Users and implementors should be aware that
this protocol is not as secure as Kerberos, and
not as secure as any client-side private-key
scheme. Nevertheless it is better than nothing,
better than what is commonly used with telnet
and ftp, and better than Basic authentication.”

-- Franks et al. 1999
http://www.ietf.org/rfc/rfc2617.txt

http://www.ietf.org/rfc/rfc2617.txt

HTTP Digest Authentication

● Avoids sends a plaintext username and password across
the wire

● All content traded could be listened on.
● No encryption, but a hashing and shared secret scheme.
● Can attempt to avoid replay attacks

– Replay attack, whereby repeating a recorded message you
fake being authenticated.

– You copy one of my “going to lunch emails” and you send it to
my colleague to trick my colleague to leave their office.

HTTP Digest Run Down

● In general we form a bunch of strings using
colons:
– We hash them
– We share them
– Some of these strings are secrets

HTTP Digest Run Down

● First the client requests data
● Then the server responds with a 401 and

WWW-Authenticate: Digest ...args...
● Then the client repeats the request with a

Authorization: header
● Then the server echos back much of that

information and returns the appropriate
content and status

hindle1@piggy:~$ curl -v --digest -u username:password1 \
 http://softwareprocess.es/b/digest-auth/index.html
* Connected to softwareprocess.es (75.119.223.206) port 80 (#0)
> GET /b/digest-auth/index.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
>
< HTTP/1.1 401 Authorization Required
< Date: Mon, 24 Mar 2014 06:11:37 GMT
* Server Apache is not blacklisted
< Server: Apache
< WWW-Authenticate: Digest realm="HTTP Digest Example",
 nonce="nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4",
 algorithm=MD5,
 domain="/b/digest-auth",
 qop="auth"
< Last-Modified: Tue, 26 Jun 2012 16:34:47 GMT
< ETag: "0-4c362ad3537c0"
< Accept-Ranges: bytes
< Content-Length: 0
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
<
* Connection #0 to host softwareprocess.es left intact

Re-GET with Digest Auth
> GET /b/digest-auth/index.html HTTP/1.1
> Authorization: Digest username="username",
 realm="HTTP Digest Example",
 nonce="nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4",
 uri="/b/digest-auth/index.html",
 cnonce="MjY3MGQyNWU4M2E0ZDFmMjAwMTJmMmVjMDAwZTgyN2I=",
 nc=00000001,
 qop=auth,
 response="523b3ab0a9d25185318b5d3cc9c634b5",
 algorithm="MD5"
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
>

Response to successful Digest

< HTTP/1.1 200 OK
< Date: Mon, 24 Mar 2014 06:11:37 GMT
* Server Apache is not blacklisted
< Server: Apache
< Authentication-Info:
 rspauth="c313b8fea0ac15efd27075a53d31994f",
 cnonce="MjY3MGQyNWU4M2E0ZDFmMjAwMTJmMmVjMDAwZTgyN2I=",
 nc=00000001,
 qop=auth
< Last-Modified: Mon, 24 Mar 2014 06:02:07 GMT
< ETag: "a-4f553f9b6078e"
< Accept-Ranges: bytes
< Content-Length: 10
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
<
it worked

HTTP Digest: Request Digest

● Request-digest for non-qop:

request-digest = “\"” + KD(H(A1), nonce-value + ":"
+ H(A2)) + “\"”

● H is often MD5
● KD(x,y) = MD5(x + “:” + y)
● A1 = username-value + ":" + realm-value ":" passwd
● A2 = “:” + digest-uri (authorization header request)

HTTP Digest: Request Digest

● Request-digest for qop:

request-digest = “\"” + KD(H(A1), “:”.join([nonce,
nc, cnonce, qop,H(A2)]) + “\"”

● H is often MD5
● KD(x,y) = MD5(x + “:” + y)
● A1 = username-value + ":" + realm-value ":" passwd
● A2 = Method “:” + digest-uri (authorization header

request)

HTTP Digest: response digest

● Sub header rspauth
● response-digest for qop (same as request digest):

response-digest = “\"” + KD(H(A1), “:”.join([nonce, nc,
cnonce, qop,H(A2)]) + “\"”

● H is often MD5
● KD(x,y) = MD5(x + “:” + y)
● A1 = username-value + ":" + realm-value ":" passwd
● A2 = Method “:” + digest-uri (authorization header request)
● EXCEPT it is hex encoded

Let's do it by hand
WWW-Authenticate: Digest realm="HTTP Digest Example",

nonce="nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4
", algorithm=MD5, domain="/b/digest-auth", qop="auth"

def md5(v):
 m = hashlib.md5()
 m.update(v)
 return m.hexdigest()

username = "username"
passwd = "password1"
realm = "HTTP Digest Example"
a1 = ":".join([username,realm,passwd])
a2 = ":".join(["GET","/b/digest-auth/index.html"])
method="GET"
uri="/b/digest-auth/index.html"
qop="auth"
nonce = "nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4"
nc="00000001"
cnonce="MjY3MGQyNWU4M2E0ZDFmMjAwMTJmMmVjMDAwZTgyN2I="
md5(md5(a1) + ":" + ":".join([nonce, nc, cnonce, qop, md5(a2)]))
OUT: '523b3ab0a9d25185318b5d3cc9c634b5'

HTTP Digest Authentication

● Can be man in the middled
– Someone could change HTTP headers on you and

latch onto your authentication

● Offers no confidentiality
● Performance issues:

– Each nonce update requires a reauth
– Can't send a pre-auth'd request without chatting

first.

HTTP Digest Authentication

● Nonces
– Need to be generated and changed often
– A stale nonce is a broken system
– Easy to break

Authentication and REST?

● Digest will require a lot of hand shaking all over the
place

● Basic is far simpler
● Basic works fine over HTTPS

– Other alternatives
● OpenID
● Oauth
● Cookies and Sessions but you might have strip authentication

along the way to make it more restful
● Tokens

Authorization header

● In Oauth and Oauth2 the authorization header
is overriden with a token:
– Authorization: token OAUTH-TOKEN
– Reusing HTTP infrastructure is probably a good idea

● Authorization token allows things to stay
RESTful

Resources

● RFC 2617 HTTP Authentication: Basic and Digest
Access Authentication
http://www.ietf.org/rfc/rfc2617.txt

● Github V3 Oauth
– https://developer.github.com/v3/oauth/

● An HTTP Digest example
– http://en.wikipedia.org/wiki/Digest_access_authentic

ation#HTTP_digest_authentication_considerations

https://developer.github.com/v3/oauth/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

