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Web Authentication

● The methods of authenticating users 
according to the HTTP spec.

● Somewhat different from alternative auth 
means such as secure tokens, cookies, and 
sessions, but often used together.

● Since software is on the web, we need to 
apply the same protections we apply to 
software.



  

      HTTP Authentication: Basic and 
Digest Access Authentication

● Defined in http://www.ietf.org/rfc/rfc2617.txt by 
Franks et al. 1999

● 2 forms of auth
– Basic

● User name and password sent as “clear text”
● Unsafe unless you use SSL/TLS (HTTPS)

– Digest
● Using cryptographic hashes and shared secrets to authenticate. 

Slightly safer, can still get hijacked.

● Hint: Use HTTPS all of the time ;-)

http://www.ietf.org/rfc/rfc2617.txt


  

HTTP Basic



  

HTTP Basic

● Easiest and “stateless”
● User accesses a resource and a 401 unauthorized is 

returned but a WWW-Authenticate header is sent.
– WWW-Authenticate: Basic realm="Name of your realm"

● Realm is what you are authenticating for

– User-agent responds with:
● Authorization: Basic aGluZGxlMTpwYXNzd29yZDE=

– Base64(userid + “:” + password)
– Base64(“hindle1:password1”) === “aGluZGxlMTpwYXNzd29yZDE=”



  

HTTP Basic Assumptions

● Client should be access all paths “at or deeper 
than the depth of the last symbolic element in 
the parth field”
– So all files and subdirs within whatever you 

authenticated with.
● You can send authorization as much as you like.



  

HTTP Basic

● HTTP Basic over HTTP 
– Unencrypted
– Insecure
– Stealable
– Unsafe
– Proxyable
– Stateless



  

hindle1@piggy:~$ curl -v http://softwareprocess.es/b/basic-auth/index.html
* Adding handle: conn: 0x2249b70
* Adding handle: send: 0
* Adding handle: recv: 0
* Curl_addHandleToPipeline: length: 1
* - Conn 0 (0x2249b70) send_pipe: 1, recv_pipe: 0
* About to connect() to softwareprocess.es port 80 (#0)
*   Trying 75.119.223.206...
* Connected to softwareprocess.es (75.119.223.206) port 80 (#0)
> GET /b/basic-auth/index.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
> 
< HTTP/1.1 401 Authorization Required
< Date: Mon, 24 Mar 2014 04:35:20 GMT
* Server Apache is not blacklisted
< Server: Apache
< WWW-Authenticate: Basic realm="HTTP Basic Example"
< Last-Modified: Tue, 26 Jun 2012 16:34:47 GMT
< ETag: "0-4c362ad3537c0"
< Accept-Ranges: bytes
< Content-Length: 0
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
< 



  

hindle1@piggy:~$ curl -v -u username:password1 http://softwareprocess.es/b/basic-auth/index.html
* Adding handle: conn: 0x12c1bd0
* Adding handle: send: 0
* Adding handle: recv: 0
* Curl_addHandleToPipeline: length: 1
* - Conn 0 (0x12c1bd0) send_pipe: 1, recv_pipe: 0
* About to connect() to softwareprocess.es port 80 (#0)
*   Trying 75.119.223.206...
* Connected to softwareprocess.es (75.119.223.206) port 80 (#0)
* Server auth using Basic with user 'username'
> GET /b/basic-auth/index.html HTTP/1.1
> Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQx
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
> 
< HTTP/1.1 200 OK
< Date: Mon, 24 Mar 2014 04:36:52 GMT
* Server Apache is not blacklisted
< Server: Apache
< Last-Modified: Mon, 24 Mar 2014 04:31:15 GMT
< ETag: "a-4f552b4c850af"
< Accept-Ranges: bytes
< Content-Length: 10
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
< 
it worked



  

HTTP Basic

hindle1@piggy:~$ base64 -d
dXNlcm5hbWU6cGFzc3dvcmQx
username:password1

> Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQx

So no encryption there!



  

HTTP Basic



  

HTTP Digest Authentication

● “Users and implementors should be aware that 
this protocol is not as   secure as Kerberos, and 
not as secure as any client-side private-key 
scheme. Nevertheless it is better than nothing, 
better than what is commonly used with telnet 
and ftp, and better than Basic authentication.”

-- Franks et al. 1999 
http://www.ietf.org/rfc/rfc2617.txt 

http://www.ietf.org/rfc/rfc2617.txt


  

HTTP Digest Authentication

● Avoids sends a plaintext username and password across 
the wire

● All content traded could be listened on.
● No encryption, but a hashing and shared secret scheme.
● Can attempt to avoid replay attacks

– Replay attack, whereby repeating a recorded message you 
fake being authenticated.

– You copy one of my “going to lunch emails” and you send it to 
my colleague to trick my colleague to leave their office.



  

HTTP Digest Run Down

● In general we form a bunch of strings using 
colons:
– We hash them
– We share them
– Some of these strings are secrets



  

HTTP Digest Run Down

● First the client requests data
● Then the server responds with a 401 and 

WWW-Authenticate: Digest ...args...
● Then the client repeats the request with a 

Authorization: header
● Then the server echos back much of that 

information and returns the appropriate 
content and status



  

hindle1@piggy:~$ curl -v --digest -u username:password1 \
     http://softwareprocess.es/b/digest-auth/index.html
* Connected to softwareprocess.es (75.119.223.206) port 80 (#0)
> GET /b/digest-auth/index.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
> 
< HTTP/1.1 401 Authorization Required
< Date: Mon, 24 Mar 2014 06:11:37 GMT
* Server Apache is not blacklisted
< Server: Apache
< WWW-Authenticate: Digest realm="HTTP Digest Example", 
  nonce="nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4", 
   algorithm=MD5, 
   domain="/b/digest-auth", 
   qop="auth"
< Last-Modified: Tue, 26 Jun 2012 16:34:47 GMT
< ETag: "0-4c362ad3537c0"
< Accept-Ranges: bytes
< Content-Length: 0
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
< 
* Connection #0 to host softwareprocess.es left intact



  

Re-GET with Digest Auth
> GET /b/digest-auth/index.html HTTP/1.1
> Authorization: Digest username="username", 
    realm="HTTP Digest Example", 
    nonce="nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4", 
    uri="/b/digest-auth/index.html", 
    cnonce="MjY3MGQyNWU4M2E0ZDFmMjAwMTJmMmVjMDAwZTgyN2I=", 
    nc=00000001, 
    qop=auth, 
    response="523b3ab0a9d25185318b5d3cc9c634b5", 
    algorithm="MD5"
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
> 



  

Response to successful Digest

< HTTP/1.1 200 OK
< Date: Mon, 24 Mar 2014 06:11:37 GMT
* Server Apache is not blacklisted
< Server: Apache
< Authentication-Info: 
  rspauth="c313b8fea0ac15efd27075a53d31994f", 
  cnonce="MjY3MGQyNWU4M2E0ZDFmMjAwMTJmMmVjMDAwZTgyN2I=", 
  nc=00000001, 
  qop=auth
< Last-Modified: Mon, 24 Mar 2014 06:02:07 GMT
< ETag: "a-4f553f9b6078e"
< Accept-Ranges: bytes
< Content-Length: 10
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
< 
it worked



  

HTTP Digest: Request Digest

● Request-digest for non-qop:

request-digest  = “\"” + KD( H(A1), nonce-value + ":"  
+ H(A2) ) + “\"”

● H is often MD5
● KD(x,y) = MD5(x + “:” + y)
● A1 = username-value + ":" + realm-value ":" passwd 
● A2 = “:” + digest-uri (authorization header request) 



  

HTTP Digest: Request Digest

● Request-digest for qop:

request-digest  = “\"” + KD( H(A1), “:”.join([nonce, 
nc, cnonce, qop,H(A2)] ) + “\"”

● H is often MD5
● KD(x,y) = MD5(x + “:” + y)
● A1 = username-value + ":" + realm-value ":" passwd 
● A2 = Method “:” + digest-uri (authorization header 

request) 



  

HTTP Digest: response digest

● Sub header rspauth
● response-digest for qop (same as request digest):

response-digest  = “\"” + KD( H(A1), “:”.join([nonce, nc, 
cnonce, qop,H(A2)] ) + “\"”

● H is often MD5
● KD(x,y) = MD5(x + “:” + y)
● A1 = username-value + ":" + realm-value ":" passwd 
● A2 = Method “:” + digest-uri (authorization header request)
● EXCEPT it is hex encoded 



  

Let's do it by hand
WWW-Authenticate: Digest realm="HTTP Digest Example", 

nonce="nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4
", algorithm=MD5, domain="/b/digest-auth", qop="auth"

def md5(v):
    m = hashlib.md5()
    m.update(v)
    return m.hexdigest()

username = "username"
passwd = "password1"
realm = "HTTP Digest Example"
a1 = ":".join([username,realm,passwd])
a2 = ":".join(["GET","/b/digest-auth/index.html"])
method="GET"
uri="/b/digest-auth/index.html"
qop="auth"
nonce = "nb6xG1T1BAA=d3ef815a59221504475406693386f990b8a7a3a4"
nc="00000001"
cnonce="MjY3MGQyNWU4M2E0ZDFmMjAwMTJmMmVjMDAwZTgyN2I="
md5(md5(a1) + ":" + ":".join([nonce, nc, cnonce, qop, md5(a2)]))
# OUT: '523b3ab0a9d25185318b5d3cc9c634b5'



  

HTTP Digest Authentication

● Can be man in the middled
– Someone could change HTTP headers on you and 

latch onto your authentication

● Offers no confidentiality
● Performance issues:

– Each nonce update requires a reauth
– Can't send a pre-auth'd request without chatting 

first.



  

HTTP Digest Authentication

● Nonces
– Need to be generated and changed often
– A stale nonce is a broken system
– Easy to break



  

Authentication and REST?

● Digest will require a lot of hand shaking all over the 
place

● Basic is far simpler
● Basic works fine over HTTPS

– Other alternatives
● OpenID
● Oauth
● Cookies and Sessions but you might have strip authentication 

along the way to make it more restful
● Tokens



  

Authorization header

● In Oauth and Oauth2 the authorization header 
is overriden with a token:
– Authorization: token OAUTH-TOKEN
– Reusing HTTP infrastructure is probably a good idea

● Authorization token allows things to stay 
RESTful



  

Resources

● RFC 2617 HTTP Authentication: Basic and Digest 
Access Authentication 
http://www.ietf.org/rfc/rfc2617.txt

● Github V3 Oauth
– https://developer.github.com/v3/oauth/

● An HTTP Digest example
– http://en.wikipedia.org/wiki/Digest_access_authentic

ation#HTTP_digest_authentication_considerations

https://developer.github.com/v3/oauth/
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