

HTTP Performance

Abram Hindle
abram.hindle@ualberta.ca

Department of Computing Science
University of Alberta

http://softwareprocess.es/
CC-BY-SA 4.0

mailto:abram.hindle@ualberta.ca
http://softwareprocess.es/

Performance on the Web

● Performance is a non functional requirement
referring to how well a web site or service
responds.

● Performance can be measured in terms

– Requests
– Volume
– Latency
– Bandwidth
– Utilization

BEFORE YOU OPTIMIZE

● Measure something:
– Requests, volume, latency, bandwidth, utilization, time

● Record that number!
– You need to compare it against future values

● Record and track the original settings.
– You need to compare to performance with your changes

● Run your tests more than once.
– For real stats, you want more than 10 runs before and after
– For t-tests and Wilcoxon tests you want 40+

Google says...

● Web Performance Best Practices
https://developers.google.com/speed/docs/best-practices/rules_intro
– Optimizing caching — keeping your application's data and logic off the

network altogether
– Minimizing round-trip times — reducing the number of serial request-

response cycles
– Minimizing request overhead — reducing upload size
– Minimizing payload size — reducing the size of responses, downloads, and

cached pages
– Optimizing browser rendering — improving the browser's layout of a page
– Optimizing for mobileNew! — tuning a site for the characteristics of mobile

networks and mobile devices
● Portions of this page are modifications based on work created and shared by Google

and used according to terms described in the Creative Commons 3.0 Attribution License.

Caching!

● Caching increase locality
● Locality increases bandwidth
● Locality decreases latency
● Levels of cache:

– CPU
– Memory
– Disk
– Network

Caching!

> GET /static/SoftwareProcess.es.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Mon, 07 Apr 2014 03:09:26 GMT
* Server Apache is not blacklisted
< Server: Apache
< Last-Modified: Mon, 07 Apr 2014 03:00:05 GMT
< ETag: "215f-4f66b107fc739"
< Accept-Ranges: bytes
< Content-Length: 8543
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
<

Caching! Do it Again!

> GET /static/SoftwareProcess.es.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Mon, 07 Apr 2014 03:10:50 GMT
* Server Apache is not blacklisted
< Server: Apache
< Last-Modified: Mon, 07 Apr 2014 03:00:05 GMT
< ETag: "215f-4f66b107fc739"
< Accept-Ranges: bytes
< Content-Length: 8543
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
<

Cold GET

Refresh

If I just type in the URL again

New

Cache Headers

Refresh

Cache Headers

User Agent (Browser) Cache

● Also, if the response does have a Last-Modified
time, the heuristic expiration value SHOULD be
no more than some fraction of the interval since
that time. A typical setting of this fraction might
be 10%. – RFC2616 section 13

● This means if it was modified 10 minutes ago,
you should probably hit it up again in a minute.
– Where as if it was modified 100 days ago, you

should get a new version 10 days from now.

User Agents (Browser) Cache

● Thus it is up to the browser to emit a request
● They do so upon expiry or last modified time

heuristic
● Or the user forces a refresh

– CTRL-SHIFT-R or ctrl-shit click on the refresh
button

● In browser cache is the most local and high
performance cache!

Cache-control

● Generally sent by User Agent
● Indicates how they want to handle this

request
● It signals proxies and caches how to handle

the request

Cache-Control: no-cache

● You must revalidate
– We didn't give it a time

● A 304 response is fine
● Forces a request out to the server
● max-age=0 means the same thing

Cache-Control: no-store

● Don't store anything
● Suggests that the results are not-cacheable

and emphemeral.
● Will not act as DRM

Cache-Control: max-age=

● Cache-Control: max-age=seconds in a HTTP
response tells the Use-Agent the maximum
age they should let this resource last

● Easy to deploy

● Cache-Control: max-age=259200

– 3 Days

● Benefit: no date math for you!

● Benefit: No date formatting!

● Disadvantage: Have to predict max-age!

Response Header: Expires

● Expires tells the Use-Agent after which date
they should ask for a new instance of the
resource.

● Easiest to deploy
● Very simple
● Causes lots of problems if set wrong!
● Expires: Mon, 07 Apr 2014 03:00:05 GMT

Request Header: If-Modified-Since

● Conditional HTTP Request
● Return a 304 if not modified since
● If-Modified-Since: Mon, 07 Apr 2014 03:00:05 GMT

– Don't send me anything new unless the resource has
been modified after that time.

● If the response is anything but a 200 OK, return a
normal response instead of the 304

●

Response Header: Last-Modified

● The Last-Modified entity-header field value is
often used as a cache validator. In simple
terms, a cache entry is considered to be valid if
the entity has not been modified since the Last-
Modified value. – HTTP RFC 2616 Fielding et
al.
http://www.w3.org/Protocols/rfc2616/rfc261
6-sec13.html#sec13.3.1

Response Header: Last-Modified

● Last-Modified is a date that the resource was
last modified

● Used for simple caching
● Requires the HTTP server to respond

HTTP ETag

● What if you cannot guess or estimate the time
that content will be safe?

● What if content updates all the time,
unpredictably?

● What if content updates but all changes aren't
that important:
– E.g. your age does increase every second but

maybe it isn't important to caching to have your
age updated per each second?

HTTP ETag

● How do you make it?
● If strong (exact content) just use a hash like SHA1
● If weak then hash some content you think is

relevant and prefix with W/”etagvalue” to
indicate it is a weak hash

● If hashing is pointless make an etag of actual
values in plaintext

● Keep it short

ETags: Entity Tags!

● HTTP Response Header
● Contains a name or tag indicating the content

or revision of a resource.
– Is not date related
– Tends to be content related
– Can be any value
– Can use any hash

ETags: If-None-Match

● HTTP Request Header that makes the request
conditional.

● If any of the provided e-tags match send us back a
304 status code, otherwise send us the resource!

● If-None-Match: “someetag”
● If-None-Match: “*” // rely on the date stuff, not

etags
● If-None-Match: “etag1”, “etag2”

ETags: If-Match

● HTTP Request Header that makes the request conditional.
● Used in updates to ensure the wrong version is not being

updates (like a revision id)
● Provide “*” or an ETag

– “*” means anything (e.g. you probably have it or it might not
exist, but you're just checking)

● If-Match: “someetag”
● If-Match: “*”
● If-Match: “etag1”, “etag2”

Dangers of the Etag

● Cookies part II
– Etags allow for vendors (advertisers) to finger print your

client because your client will send the etags back.
– If you deny cookies, you tend to send etags.
– AOL, Spotify, GigaOm, Etsy, KISSmetrics sued over

undeletable tracking cookies
http://www.extremetech.com/internet/91966-aol-spotify-g
igaom-etsy-kissmetrics-sued-over-undeletable-tracking-c
ookies

– Ayenson, Mika, et al. "Flash cookies and privacy II: Now
with HTML5 and ETag respawning." World Wide Web
Internet And Web Information Systems (2011).
ftp://peramides.com.ar/SSRN-id1898390.pdf

http://www.extremetech.com/internet/91966-aol-spotify-gigaom-etsy-kissmetrics-sued-over-undeletable-tracking-cookies
http://www.extremetech.com/internet/91966-aol-spotify-gigaom-etsy-kissmetrics-sued-over-undeletable-tracking-cookies
http://www.extremetech.com/internet/91966-aol-spotify-gigaom-etsy-kissmetrics-sued-over-undeletable-tracking-cookies

Dangers of the Etag

● Too much information
– Some Etags contain irrelevant information!
– What if the browser reboots and the Etags are

lost?
● If the browser/user-agent had a timing guarantee this

wouldn't be a problem

Performance, the Cross Cutting
Concern

● Performance is a cross cutting concern
because it interacts with other functionality:
– Security

● Lack of encryption means global proxying
● Authentication can limit caching
● Authentication can imply state

– State
● State can limit caching
● State can limit layering

Round Trips

● DNS Lookups, Connections, HTTP transactions
● Async is fast: Just send it! Who cares when it arrives
● Rountrips are synchronous and slow: We must wait for a

response!
– Avoid HTTP Redirects that aren't cacheable

● Rewrite Server Side

– Avoid too many HTTP hosts
– Can you piggyback?
– CSS Sprites are often recommended to reduce number of image

requests
● Avoid CSS imports

Round Trip Tricks

● Use multiple static content hostnames:
– Take a hit in DNS lookup
– But improve parallel download performance
– Static hosts should not be dynamic and have

stable IPs

Reduce Request Size

● Giant Cookies – NOOOOO
● Giant URIs -- NOOOO
● Too many headers? NOOOO
● Remember all that networking we went over?

– Try to fit within the MTU!

Avoid Dynamism and Cookies for
Static Content

● For static content, do GETs to get it
– For static content avoid dynamism and cookies
– Cookies imply state and can mess up caching

● Use seperate domains for static content to
avoid statefulness

Minimize Resource Size

● Images – too big
● Javascript – minify (I dislike this one)
● GZIP Encoding!
● Sound – too big
● Video – too big

– You can fake Sound and Video in JS!

Minimize Number of Resources

● 1 or 0 CSS Files
● 1 or 0 Javascript Files
● 1 or 0 Images (CSS Sprites)
● 1 or 0 HTML Files

– You could generate a page in JS and take no hit.
● 1 giant page has the problem if it is dynamic, but if

it is 1 giant page that does dynamic things you can
cache that page and never have to get HTML/JS/CSS
again.

Optimize Rendering

● Recommendations:
– CSS at the top
– Javascript at the bottom
– Content in the middle

● Give appropriate sizes and hints
– The layouter is quite expensive, give some hints

and it will go to town.

Defer Javascript

● Nasty trick:
– Encode javascript as a string and eval it later

when you need it.
– Avoids heavy page loading and JS parsing with

the browser is working hard.
– CPU driven

Content Delivery Networks

● These are global networks of content
providers that can mirror your content.

● Excellent latency and locality
● Great for static stuff
● $$$

GZIP It!

● Turn on GZIP encoding to make things
smallers
– Watch out! This affects latency
– Improves bandwidth
– Balancing act
– Generally recommended

Fix DNS

● Use A and AAAA records instead of CNAMEs
● Have your authoritative name server give the results
● Allow for caching of DNS requests to avoid excessive

lookups
● Provide many A records in 1 response
● Reduce number of hosts on 1 page
● Some recommend using CNAME to allow multiple

connections (so it depends!)

Avoid Indirection

● Redirections
● Imports
● Dynamic choosing of content
● Javascript downloading of content

Avoid POST

● POST is not idempotent
● POST is not cacheable
● POST is dynamic
● POST smashes all the performance

infrastructure in a fine powder and blows it
into your face.

Check for Errors

● 403s, 404s, 410s, etc. Are all slow
– Often the server works harder to serve an error

than it does to serve real content.
– Errors cause exceptions, exceptions cause latency

and pain and reporting.
– Errors cause logging – more IO
– Errors are worthless requests hogging up

resources

Encoding!

● Sending a JSON encoding is not always
appropriate in terms of size.

● Sending an audio stream as ASCII text? Bad
idea. Use an appropriate format.

● Do you need lossy or losseless?
● Do you need XML? JSON? CSV? Binary?

Repeat yourself or don't repeat
yourself

● Cache matters if the cache can avoid you
repeating yourself then go for it.

● But sometimes denormalizing data and
providing duplicate information avoids more
requests.

Async over Sync

● Asynchronous means that you can do other
things while something is occurring.

● Synchronous is blocking which implies
latency.

● Synchronous means round trips
● Async means parallelizable
● Synchronous means serialized

Javascript Includes...

● Some people like to include common libraries
from the library homepage.
– Benefit: Someone else has done this so the user

has cached it.
– Disadvantage: What if they get hacked
– Disadvantage: What if they are slower than you?
– Disadvantage: What if you lose locality?

Resources

● RFC 2616 Section 13
http://www.w3.org/Protocols/rfc2616/rfc261
6-sec13.html

● RFC 2616 Section 14
http://www.w3.org/Protocols/rfc2616/rfc261
6-sec14.html

● Web Performance Best Practices
https://developers.google.com/speed/docs/b
est-practices/rules_intro

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Resources

● HTTP Caching
https://developers.google.com/speed/article
s/caching

● Best Practices for Speeding Up Your Web Site
http://developer.yahoo.com/performance/rul
es.html

● Browser Cache Matters
http://yuiblog.com/blog/2007/01/04/perfor
mance-research-part-2/

https://developers.google.com/speed/articles/caching
https://developers.google.com/speed/articles/caching
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html

Resources

● Chapter 10 — Improving Web Services
Performance
http://msdn.microsoft.com/en-us/library/ff6
47786.aspx

● 19 Tuning Web Services
http://docs.oracle.com/cd/E24329_01/web.1
211/e24390/webservicestune.htm

http://msdn.microsoft.com/en-us/library/ff647786.aspx
http://msdn.microsoft.com/en-us/library/ff647786.aspx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

