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Performance on the Web

● Performance is a non functional requirement 
referring to how well a web site or service 
responds.

● Performance can be measured in terms

– Requests
– Volume
– Latency
– Bandwidth
– Utilization



  

BEFORE YOU OPTIMIZE

● Measure something: 
– Requests, volume, latency, bandwidth, utilization, time

● Record that number!
– You need to compare it against future values

● Record and track the original settings.
– You need to compare to performance with your changes

● Run your tests more than once. 
– For real stats, you want more than 10 runs before and after
– For t-tests and Wilcoxon tests you want 40+



  

Google says...

● Web Performance Best Practices 
https://developers.google.com/speed/docs/best-practices/rules_intro
–     Optimizing caching — keeping your application's data and logic off the 

network altogether
–     Minimizing round-trip times — reducing the number of serial request-

response cycles
–     Minimizing request overhead — reducing upload size
–     Minimizing payload size — reducing the size of responses, downloads, and 

cached pages
–     Optimizing browser rendering — improving the browser's layout of a page
–     Optimizing for mobileNew! — tuning a site for the characteristics of mobile 

networks and mobile devices
●      Portions of this page are modifications based on work created and shared by Google 

and used according to terms described in the Creative Commons 3.0 Attribution License. 



  

Caching!

● Caching increase locality
● Locality increases bandwidth
● Locality decreases latency
● Levels of cache:

– CPU
– Memory
– Disk
– Network



  

Caching!

> GET /static/SoftwareProcess.es.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
> 
< HTTP/1.1 200 OK
< Date: Mon, 07 Apr 2014 03:09:26 GMT
* Server Apache is not blacklisted
< Server: Apache
< Last-Modified: Mon, 07 Apr 2014 03:00:05 GMT
< ETag: "215f-4f66b107fc739"
< Accept-Ranges: bytes
< Content-Length: 8543
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
< 



  

Caching! Do it Again!

> GET /static/SoftwareProcess.es.html HTTP/1.1
> User-Agent: curl/7.32.0
> Host: softwareprocess.es
> Accept: */*
> 
< HTTP/1.1 200 OK
< Date: Mon, 07 Apr 2014 03:10:50 GMT
* Server Apache is not blacklisted
< Server: Apache
< Last-Modified: Mon, 07 Apr 2014 03:00:05 GMT
< ETag: "215f-4f66b107fc739"
< Accept-Ranges: bytes
< Content-Length: 8543
< Vary: Accept-Encoding
< Content-Type: text/html; charset=utf-8
< 



  

Cold GET



  

Refresh



  

If I just type in the URL again



  

New

Cache Headers



  

Refresh

Cache Headers



  

User Agent (Browser) Cache

● Also, if the response does have a Last-Modified 
time, the heuristic expiration value SHOULD be 
no more than some fraction of the interval since 
that time. A typical setting of this fraction might 
be 10%. – RFC2616 section 13

● This means if it was modified 10 minutes ago, 
you should probably hit it up again in a minute.
– Where as if it was modified 100 days ago, you 

should get a new version 10 days from now.



  

User Agents (Browser) Cache

● Thus it is up to the browser to emit a request
● They do so upon expiry or last modified time 

heuristic
● Or the user forces a refresh

– CTRL-SHIFT-R or ctrl-shit click on the refresh 
button

● In browser cache is the most local and high 
performance cache!



  

Cache-control

● Generally sent by User Agent
● Indicates how they want to handle this 

request
● It signals proxies and caches how to handle 

the request



  

Cache-Control: no-cache

● You must revalidate
– We didn't give it a time

● A 304 response is fine
● Forces a request out to the server
● max-age=0 means the same thing



  

Cache-Control: no-store

● Don't store anything
● Suggests that the results are not-cacheable 

and emphemeral.
● Will not act as DRM



  

Cache-Control: max-age=

● Cache-Control: max-age=seconds in a HTTP 
response tells the Use-Agent the maximum 
age they should let this resource last

● Easy to deploy

● Cache-Control: max-age=259200

– 3 Days

● Benefit: no date math for you!

● Benefit: No date formatting!

● Disadvantage: Have to predict max-age!



  

Response Header: Expires

● Expires tells the Use-Agent after which date 
they should ask for a new instance of the 
resource.

● Easiest to deploy
● Very simple
● Causes lots of problems if set wrong!
● Expires: Mon, 07 Apr 2014 03:00:05 GMT



  

Request Header: If-Modified-Since

● Conditional HTTP Request
● Return a 304 if not modified since
● If-Modified-Since: Mon, 07 Apr 2014 03:00:05 GMT

– Don't send me anything new unless the resource has 
been modified after that time.

● If the response is anything but a 200 OK, return a 
normal response instead of the 304

●



  

Response Header: Last-Modified

●  The Last-Modified entity-header field value is 
often used as a cache validator. In simple 
terms, a cache entry is considered to be valid if 
the entity has not been modified since the Last-
Modified value.  – HTTP RFC 2616 Fielding et 
al.  
http://www.w3.org/Protocols/rfc2616/rfc261
6-sec13.html#sec13.3.1



  

Response Header: Last-Modified

● Last-Modified is a date that the resource was 
last modified

● Used for simple caching
● Requires the HTTP server to respond



  

HTTP ETag

● What if you cannot guess or estimate the time 
that content will be safe?

● What if content updates all the time, 
unpredictably?

● What if content updates but all changes aren't 
that important:
– E.g. your age does increase every second but 

maybe it isn't important to caching to have your 
age updated per each second?



  

HTTP ETag

● How do you make it?
● If strong (exact content) just use a hash like SHA1
● If weak then hash some content you think is 

relevant and prefix with W/”etagvalue” to 
indicate it is a weak hash

● If hashing is pointless make an etag of actual 
values in plaintext

● Keep it short



  

ETags: Entity Tags!

● HTTP Response Header
● Contains a name or tag indicating the content 

or revision of a resource.
– Is not date related
– Tends to be content related
– Can be any value
– Can use any hash



  

ETags: If-None-Match

● HTTP Request Header that makes the request 
conditional.

● If any of the provided e-tags match send us back a 
304 status code, otherwise send us the resource!

● If-None-Match: “someetag”
● If-None-Match: “*” // rely on the date stuff, not 

etags
● If-None-Match: “etag1”, “etag2”



  

ETags: If-Match

● HTTP Request Header that makes the request conditional.
● Used in updates to ensure the wrong version is not being 

updates (like a revision id)
● Provide “*” or an ETag

– “*” means anything (e.g. you probably have it or it might not 
exist, but you're just checking)

● If-Match: “someetag”
● If-Match: “*”
● If-Match: “etag1”, “etag2”



  

Dangers of the Etag

● Cookies part II
– Etags allow for vendors (advertisers) to finger print your 

client because your client will send the etags back. 
– If you deny cookies, you tend to send etags.
– AOL, Spotify, GigaOm, Etsy, KISSmetrics sued over 

undeletable tracking cookies 
http://www.extremetech.com/internet/91966-aol-spotify-g
igaom-etsy-kissmetrics-sued-over-undeletable-tracking-c
ookies

– Ayenson, Mika, et al. "Flash cookies and privacy II: Now 
with HTML5 and ETag respawning." World Wide Web 
Internet And Web Information Systems (2011). 
ftp://peramides.com.ar/SSRN-id1898390.pdf

http://www.extremetech.com/internet/91966-aol-spotify-gigaom-etsy-kissmetrics-sued-over-undeletable-tracking-cookies
http://www.extremetech.com/internet/91966-aol-spotify-gigaom-etsy-kissmetrics-sued-over-undeletable-tracking-cookies
http://www.extremetech.com/internet/91966-aol-spotify-gigaom-etsy-kissmetrics-sued-over-undeletable-tracking-cookies


  

Dangers of the Etag

● Too much information
– Some Etags contain irrelevant information!
– What if the browser reboots and the Etags are 

lost?
● If the browser/user-agent had a timing guarantee this 

wouldn't be a problem



  

Performance, the Cross Cutting 
Concern

● Performance is a cross cutting concern 
because it interacts with other functionality:
– Security

● Lack of encryption means global proxying
● Authentication can limit caching
● Authentication can imply state

– State
● State can limit caching
● State can limit layering



  

Round Trips

● DNS Lookups, Connections, HTTP transactions
● Async is fast: Just send it! Who cares when it arrives
● Rountrips are synchronous and slow: We must wait for a 

response!
– Avoid HTTP Redirects that aren't cacheable

● Rewrite Server Side

– Avoid too many HTTP hosts
– Can you piggyback?
– CSS Sprites are often recommended to reduce number of image 

requests
● Avoid CSS imports



  

Round Trip Tricks

● Use multiple static content hostnames:
– Take a hit in DNS lookup
– But improve parallel download performance
– Static hosts should not be dynamic and have 

stable IPs



  

Reduce Request Size

● Giant Cookies – NOOOOO
● Giant URIs -- NOOOO
● Too many headers? NOOOO
● Remember all that networking we went over?

– Try to fit within the MTU!



  

Avoid Dynamism and Cookies for 
Static Content

● For static content, do GETs to get it
– For static content avoid dynamism and cookies
– Cookies imply state and can mess up caching

● Use seperate domains for static content to 
avoid statefulness



  

Minimize Resource Size

● Images – too big
● Javascript – minify (I dislike this one)
● GZIP Encoding!
● Sound – too big
● Video – too big

– You can fake Sound and Video in JS!



  

Minimize Number of Resources

● 1 or 0 CSS Files
● 1 or 0 Javascript Files
● 1 or 0 Images (CSS Sprites)
● 1 or 0 HTML Files

– You could generate a page in JS and take no hit.
● 1 giant page has the problem if it is dynamic, but if 

it is 1 giant page that does dynamic things you can 
cache that page and never have to get HTML/JS/CSS 
again.



  

Optimize Rendering

● Recommendations:
– CSS at the top
– Javascript at the bottom
– Content in the middle

● Give appropriate sizes and hints
– The layouter is quite expensive, give some hints 

and it will go to town.



  

Defer Javascript

● Nasty trick:
– Encode javascript as a string and eval it later 

when you need it.
– Avoids heavy page loading and JS parsing with 

the browser is working hard.
– CPU driven



  

Content Delivery Networks

● These are global networks of content 
providers that can mirror your content.

● Excellent latency and locality
● Great for static stuff
● $$$



  

GZIP It!

● Turn on GZIP encoding to make things 
smallers
– Watch out! This affects latency
– Improves bandwidth
– Balancing act
– Generally recommended



  

Fix DNS

● Use A and AAAA records instead of CNAMEs
● Have your authoritative name server give the results
● Allow for caching of DNS requests to avoid excessive 

lookups
● Provide many A records in 1 response
● Reduce number of hosts on 1 page
● Some recommend using CNAME to allow multiple 

connections (so it depends!)



  

Avoid Indirection

● Redirections
● Imports
● Dynamic choosing of content
● Javascript downloading of content



  

Avoid POST

● POST is not idempotent
● POST is not cacheable
● POST is dynamic
● POST smashes all the performance 

infrastructure in a fine powder and blows it 
into your face.



  

Check for Errors

● 403s, 404s, 410s, etc. Are all slow
– Often the server works harder to serve an error 

than it does to serve real content.
– Errors cause exceptions, exceptions cause latency 

and pain and reporting.
– Errors cause logging – more IO
– Errors are worthless requests hogging up 

resources



  

Encoding!

● Sending a JSON encoding is not always 
appropriate in terms of size.

● Sending an audio stream as ASCII text? Bad 
idea. Use an appropriate format.

● Do you need lossy or losseless?
● Do you need XML? JSON? CSV? Binary?



  

Repeat yourself or don't repeat 
yourself

● Cache matters if the cache can avoid you 
repeating yourself then go for it.

● But sometimes denormalizing data and 
providing duplicate information avoids more 
requests.



  

Async over Sync

● Asynchronous means that you can do other 
things while something is occurring.

● Synchronous is blocking which implies 
latency.

● Synchronous means round trips
● Async means parallelizable
● Synchronous means serialized



  

Javascript Includes...

● Some people like to include common libraries 
from the library homepage.
– Benefit: Someone else has done this so the user 

has cached it.
– Disadvantage: What if they get hacked
– Disadvantage: What if they are slower than you?
– Disadvantage: What if you lose locality?



  

Resources

● RFC 2616 Section 13 
http://www.w3.org/Protocols/rfc2616/rfc261
6-sec13.html

● RFC 2616 Section 14 
http://www.w3.org/Protocols/rfc2616/rfc261
6-sec14.html

● Web Performance Best Practices 
https://developers.google.com/speed/docs/b
est-practices/rules_intro

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html


  

Resources

● HTTP Caching 
https://developers.google.com/speed/article
s/caching

● Best Practices for Speeding Up Your Web Site 
http://developer.yahoo.com/performance/rul
es.html

● Browser Cache Matters 
http://yuiblog.com/blog/2007/01/04/perfor
mance-research-part-2/

https://developers.google.com/speed/articles/caching
https://developers.google.com/speed/articles/caching
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html


  

Resources

● Chapter 10 — Improving Web Services 
Performance 
http://msdn.microsoft.com/en-us/library/ff6
47786.aspx

● 19 Tuning Web Services 
http://docs.oracle.com/cd/E24329_01/web.1
211/e24390/webservicestune.htm

http://msdn.microsoft.com/en-us/library/ff647786.aspx
http://msdn.microsoft.com/en-us/library/ff647786.aspx
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