

CMPUT 410:
RESTful WebServices

Abram Hindle
abram.hindle@ualberta.ca

Department of Computing Science
University of Alberta

http://softwareprocess.es/

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

mailto:abram.hindle@ualberta.ca
http://softwareprocess.es/

REST

● Representational
– Issues related to representation, how to

describe/name/show
● State

– What is communicated
● Transfer

– How to communicate

REST

● Architectural Style
– Think design patterns for architecture

● Introduced by Fielding
https://www.ics.uci.edu/~fielding/pubs/dissert
ation/top.htm

● Method of calling remote objects
● Using URIs to Name Objects
● Using HTTP Verbs to manipulate them

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Examples of REST

● https://secure.flickr.com/photos/dmelchordiaz/12441232743

– User dmelchordiaz

– Photo #12441232743

● https://api.github.com/users/abramhindle

– JSON representation of abramhindle
● https://api.github.com/users/abramhindle/repos

– Abram's repos
● https://api.github.com/repos/abramhindle/24bit-allrgb

– A project of Abram's

{
 "login": "abramhindle",
 "id": 57137,
 "avatar_url": "https://gravatar.com/avatar/0cff4493d3270edd31414b2dad1ee9a9?d=https%3A%2F%2Fidenticons.github.com
%2F50cb3aa04fcde6eb1df8c0ff0b357fd4.png&r=x",
 "gravatar_id": "0cff4493d3270edd31414b2dad1ee9a9",
 "url": "https://api.github.com/users/abramhindle",
 "html_url": "https://github.com/abramhindle",
 "followers_url": "https://api.github.com/users/abramhindle/followers",
 "following_url": "https://api.github.com/users/abramhindle/following{/other_user}",
 "gists_url": "https://api.github.com/users/abramhindle/gists{/gist_id}",
 "starred_url": "https://api.github.com/users/abramhindle/starred{/owner}{/repo}",
 "subscriptions_url": "https://api.github.com/users/abramhindle/subscriptions",
 "organizations_url": "https://api.github.com/users/abramhindle/orgs",
 "repos_url": "https://api.github.com/users/abramhindle/repos",
 "events_url": "https://api.github.com/users/abramhindle/events{/privacy}",
 "received_events_url": "https://api.github.com/users/abramhindle/received_events",
 "type": "User",
 "site_admin": false,
 "name": "Abram Hindle",
 "company": "Assistant Professor at University of Alberta",
 "blog": "http://softwareprocess.es",
 "location": "Edmonton, Alberta",
 "email": "my name at softwareprocess dot es",
 "hireable": false,
 "bio": "* Software Engineering\r\n* Computer Music",
 "public_repos": 92,
 "public_gists": 2,
 "followers": 63,
 "following": 24,
 "created_at": "2009-02-23T15:43:47Z",
 "updated_at": "2014-02-10T19:47:31Z"
}

https://secure.flickr.com/photos/dmelchordiaz/12441232743
https://api.github.com/users/abramhindle/repos
https://api.github.com/repos/abramhindle/24bit-allrgb

Examples of REST

● http://api.stackexchange.com/2.2/search/exc
erpts?page=1&order=desc&sort=activity&q=ie6
%20hide%20jquery&site=stackoverflow
– Search with Stackoverflow

● http://api.stackexchange.com/2.2/posts/14556
049?site=stackoverflow
– A post from a user

● http://api.stackexchange.com/2.2/posts/1455
6049/comments?site=stackoverflow
– With comments

● http://api.stackexchange.com/docs/answers

http://api.stackexchange.com/2.2/search/excerpts?page=1&order=desc&sort=activity&q=ie6%20hide%20jquery&site=stackoverflow
http://api.stackexchange.com/2.2/search/excerpts?page=1&order=desc&sort=activity&q=ie6%20hide%20jquery&site=stackoverflow
http://api.stackexchange.com/2.2/search/excerpts?page=1&order=desc&sort=activity&q=ie6%20hide%20jquery&site=stackoverflow
http://api.stackexchange.com/2.2/posts/14556049?site=stackoverflow
http://api.stackexchange.com/2.2/posts/14556049?site=stackoverflow
http://api.stackexchange.com/2.2/posts/14556049/comments?site=stackoverflow
http://api.stackexchange.com/2.2/posts/14556049/comments?site=stackoverflow

Examples of REST APIs

● Github's RESTful API
– http://developer.github.com/v3/

● Flickr's RESTful API
– https://www.flickr.com/services/api/request.rest.ht

ml
● Stackoverflow

– http://api.stackexchange.com/docs/

http://developer.github.com/v3/
https://www.flickr.com/services/api/request.rest.html
https://www.flickr.com/services/api/request.rest.html

Gist of it

● URIs refer to resources
– Focus on URIs over parameters

● You do things (HTTP verbs) to resources
– Delete something
– Put something up
– Get something

● You use existing infrastructure and caching rules
(HTTP and HTTP User Agents and HTTP Proxies)

Why use HTTP for Remote
Procedure Calls?

● Take advantage of performance aspects of
HTTP
– Caching
– Proxies
– Flexible Networking
– Pluggable Middleware
– Allows routing

REST Properties

● Client Server
● Stateless
● Cacheable
● Uniform Interface
● Layered

and the optional:
● Code on Demand (Javascript)

 – Roy Thomas Fielding,
“Architectural Styles and the
Design of Network-based
Software Architectures”
2000.
https://www.ics.uci.edu/~fiel
ding/pubs/dissertation/top.
htm

But REST is not RPC
● Remote procedure calls are calls made across a network with semantics of procedures and

functions with inputs and outputs.
● HTTP has properties, headers, named URIs, verb and paramters. HTTP is transformable while

remote procedure calls are not.
● “What distinguishes HTTP from RPC isn't the syntax. It isn't even the different characteristics

gained from using a stream as a parameter, though that helps to explain why existing RPC
mechanisms were not usable for the Web. What makes HTTP significantly different from RPC is
that the requests are directed to resources using a generic interface with standard semantics
that can be interpreted by intermediaries almost as well as by the machines that originate
services. The result is an application that allows for layers of transformation and indirection that
are independent of the information origin, which is very useful for an Internet-scale,
multi-organization, anarchically scalable information system. RPC mechanisms, in contrast, are
defined in terms of language APIs, not network-based applications.”

 – Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software
Architectures” 2000. https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Stateless

● REST is stateless
– in the sense that the client holds the state.
– The server avoids holding client state
– Requests are HEAVY with context. They are big!

● Statelessness is an important aspect of functional
programming that allows for
– Caching
– Memoization
– Transformation

Cacheable

● Browsers and clients can cache responses
● But so can secondary caches
● Will this entity change?
● If not why request it again?
● What verbs are cacheable?

– Is POST cacheable?

Layered

Storage
Layer

Middleware
Controller

Layer
Frontend

Webserver
Layer

Limit of Client Knowledge

Layering

● Your application might not be multi-machine
– But it can have layering that operates with the

HTTP request
– You could have an auth layer that validates

authentication and strips auth information before
passing the request off to the next layer

– HTTP Request handling allows routing and the
decoration of routes to handle requests in a layered
manner.

Verbs and Meaning in REST

● GET
– Repeatable
– Stateless
– Cacheable
– Safe

● PUT
– Repeatable
– Stateless
– Cacheable

● DELETE
– Repeatable
– Stateless
– Cacheable

● POST
– Anything goes
– Not cacheable

Examples – Do you even REST?

●Search Queries?
–[] Safe?
–[] Repeatable?
–[] Cacheable
–[] Stateless

Examples – I can't put up with this

●Weather
–[] Safe?
–[] Repeatable?
–[] Cacheable
–[] Stateless

Examples – Pain in the POSTerior

●A Photo
–[] Safe?
–[] Repeatable?
–[] Cacheable
–[] Stateless

Examples – I'm going to
CTRL-ALT-DEL

●Payment
–[] Safe?
–[] Repeatable?
–[] Cacheable
–[] Stateless

Examples – I don't GET it

●Authentication
–[] Safe?
–[] Repeatable?
–[] Cacheable
–[] Stateless

Authentication

● Why aren't session IDs stateless?
● When are cookies “stateless”
● The suggestion is do authentication via headers

– HTTP-Auth
– HTTP-Digest
– Or your own headers

Design Tip

● Sometimes a URL is for both HTML and XML/JSON
● Some applications make a seperate api domain that supports

api calls and REST calls, meaning their website is aimed at
browsers but can interact with the API domain.

● HTML representationhttp://abramstuff.com/user/abram
● Versus an XML/JSON representation

http://api.abramstuff.com/user/abram
● Alternatively use the Accept headers

http://abramstuff.com/user/abram
http://api.abramstuff.com/user/abram

Performance: Caching

● But we're using HTTP
– But we can increase locality

● In browser
● In layers
● Cache between layers
● Cache transformations

● Caching is the most common performance trick on the
web today:
– http://memcached.org/
– In Memory Key store, can cache common and large objects

http://memcached.org/

Performance Claims

● Reliability
● Scalability
● Latencies
● Efficiency
● Distributivity

Performance: Layering

● Improve reliability by layering and making more
machines responsible for the same task
– If one machine dies, the middleware can just route around

the failure
– Distributed operations are easy

● Improve responsiveness by relying on more than 1
machine and returning the most immediate result.

● Can shard data across machines if it independent

People:
Everyone!

People who
Like Cheese People who

hate Cheese People who
are

undecided

VS

Performance: Layered + Caching

Storage
Layer

Middleware
Controller

Layer
Frontend

Webserver
Layer

Limit of Client Knowledge

Cache

Cache

CacheCacheCache Cache
Cache

Performance

● Degrades
– Optimization via state
– Network performance using TCP and HTTP
– Bandwidth, requests are large
– Every layer of abstraction is a danger to

performance
– Multiple layers increases latency

Photo Gallery Example

● http://photogallery/photog/Abram
– An example photographer

● http://photogallery/photog/Abram/photos
– Photos of Abram

● http://photogallery/photog/Abram/set/portfolio
– Sets of Photos

● http://photogallery/photo/7774273
– A photograph stored on the system

http://photogallery/photog/Abram
http://photogallery/photog/Abram/photos
http://photogallery/photog/Abram/set/portfolio
http://photogallery/photo/7774273

Photo Gallery Example

● http://photogallery/photog/Abram
– GET PUT DELETE POST ?

● http://photogallery/photog/Abram/photos
– GET PUT DELETE POST ?

● http://photogallery/photog/Abram/set/portfolio
– GET PUT DELETE POST ?

● http://photogallery/photo/7774273
– GET PUT DELETE POST ?

http://photogallery/photog/Abram
http://photogallery/photog/Abram/photos
http://photogallery/photog/Abram/set/portfolio
http://photogallery/photo/7774273

Design Tips

● Consider what is world readable, what the read
or read-only interface

● What needs to be private or authenticated?
● Remember OOA?

– Think about your nouns
– Think about your verbs
– Think about what relationships can be become URIs

Design Tips

● Take advantage of caching.
– Use GETs avoid POST

● Consider how independent data is
– Can you split it up safely?
– How coupled is it?
– Does it need to be coupled?

● Heavy state can stored client side.
– Take advantage of locality, your client side is the fastest

side.

Verbs+Nouns?

● GetAllTweets
– NO!

● tweets/

● GetATweet?
– No!

● Tweets/3423

● Can we use POST?
– Use POST like a PUT when you don't have an ID

Should we mass update
tweets on a PUT?

Nouns

● Brian Mulloy
https://blog.apigee.com/detail/restful_api_des
ign_plural_nouns_and_concrete_names/
Recommends:
– Usually you chose a noun because you have a

collection of items. Maybe use the plural.
– Use good concrete names. Don't generalize, you can

generalize the routes in your code but be concrete
● e.g. item versus todoNote
●

https://blog.apigee.com/detail/restful_api_design_plural_nouns_and_concrete_names/
https://blog.apigee.com/detail/restful_api_design_plural_nouns_and_concrete_names/

General REST recommendations

● Vinay Sahni suggests
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
– Focus noun first, then do verbs to those nouns
– Plural URLs (tweets/)
– Relations relation to first object /tweets/2/responses and /tweets/2/responses/4
– Use /verb for obviously important tasks like /search
– Version the API in the URL
– Search using get params
– Use Status code 201 for creation of a new resource
– Use JSON
– Don't wrap data up by default {“data”: } versus {“my”:”object”}
– For large data use pages
– Use simple HTTP auth + SSL over anything more complicated

http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

HATEOAS

● Hypermedia As The Engine of Application State
– This means include hyperlinks in your REST API

Responses!
– Either “link”:”http://url-to-this-obj”
– Give hints to where the app or the reader could go

to next.
– It's the web! Use hypermedia!

● Furthermore if you use STATUS CODE 201 you are using
Location: to allow redirection to the new object!

http://url-to-this-obj/

Errors

● Vinay Sahni suggests:
– 200 OK
– 201 Created – creation of object with POST,

redirection via Location: to new object
– 204 No Content – respond to a delete
– 304 Not Modified – you've cached it
– 401/403/404
– 405 – method not allowed (don't POST here!)

PUT

● Should you make a new object on a PUT?
● Or just update?
● Should you force creation via POST?

Books

● RESTful Web Services
– http://restfulwebapis.org/RESTful_Web_Services.p

df
– http://proquest.safaribooksonline.com.login.ezpr

oxy.library.ualberta.ca/book/web-development/web
-services/9780596529260

● Restful Web Services CookBook
– http://proquest.safaribooksonline.com.login.ezprox

y.library.ualberta.ca/book/web-development/web-s
ervices/9780596809140

http://proquest.safaribooksonline.com.login.ezproxy.library.ualberta.ca/book/web-development/web-services/9780596529260
http://proquest.safaribooksonline.com.login.ezproxy.library.ualberta.ca/book/web-development/web-services/9780596529260
http://proquest.safaribooksonline.com.login.ezproxy.library.ualberta.ca/book/web-development/web-services/9780596529260

Code

● flask-restful
– http://flask-restful.readthedocs.org/en/latest/quick

start.html

Resources: RFCs

● URIs https://tools.ietf.org/html/rfc3986
● HTTP http://tools.ietf.org/html/rfc2616
● Best Practices for Restful APIs

http://www.vinaysahni.com/best-practices-for-a
-pragmatic-restful-api

https://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc2616
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api

Videos

● SOAP versus REST
– http://www.youtube.com/watch?v=v3OMEAU_4HI

● Intro to REST
– http://www.youtube.com/watch?v=llpr5924N7E

● Intro to REST
– http://www.youtube.com/watch?v=YCcAE2SCQ6k

● Intro to REST API Style HATEOAS
– https://blog.apigee.com/detail/hateoas_101_introduction_t

o_a_rest_api_style_video_slides

http://www.youtube.com/watch?v=v3OMEAU_4HI
http://www.youtube.com/watch?v=llpr5924N7E
http://www.youtube.com/watch?v=YCcAE2SCQ6k

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

